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Summary

This report presents research on optimization formulations for jamming wireless communication networks. The first
chapter addresses deterministic situations which were the focus of the first research year. In particular, several formu-
lations of the deterministic WIRELESS NETWORK JAMMING PROBLEM were derived and theoretical proof of problem
statements equivalences were obtained. The second year addressed situations in which a network is to be jammed,
but no apriori information (i.e., topology, number of nodes, etc.) were assumed known. Proofs of upper and lower
bounds on the required number of jamming devices as well as convergence results were derived. A heuristic for this
setup was also proposed. During the third year the robust optimization formulations were researched. Information
such as the number and placement of the communication nodes and other parameters were considered subject to some
uncertainty. We developed fast and robust percentile formulations for these cases. Equivalence of problem statements
was proven for stochastic the robust formulations and computational experiments were performed
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Introduction

In adversarial environments, disabling the communication capabilities of the enemy is a high priority task.
The first chapter of the report introduced the problem of determining the optimal number and locations for a

set of jamming devices in order to neutralize a wireless communication network. This problem is known as the
WIRELESS NETWORK JAMMING PROBLEM. We developed several mathematical programming formulations
based on covering the communication nodes and limiting the connectivity index of the nodes. Two case studies are
presented comparing the formulations with the addition of various percentile constraints.

The second chapter considers the case where there is no information about the network to be jammed. The problem
is reduced to jamming all points in the area of interest. The optimal solution determines the locations of the minimum
number of jamming devices required to suppress the network. We consider a subproblem which places jamming
devices on the nodes of a uniform grid over the area of interest. The objective here is to determine the maximum grid
step size. We derived upper and lower bounds for this problem and provided a convergence result. We proved that
due to the cumulative effect of the jamming devices, the proposed method produces better solutions than the classical
technique of covering the region with uniform circles.

The deterministic formulations of the wireless network jamming problem are extended in the third chapter to tackle
the stochastic jamming problem formulations. Robust variants of previously developed deterministic formulations are
introduced. These formulations consider the case when the exact topology of the network to be jammed is not known.
Particularly, we considered instances with several likely topologies, and developed robust approaches for placing
jamming devices to suppress the network regardless of which topology is realized. We derived several formulations
and included percentile constraints to account for a variety of scenarios. Case studies are presented and the results are
analyzed.
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Chapter 1

The wireless network jamming problem

This chapter presents the results published in [7] Commander, C., Pardalos, P., Ryabchenko, V. , Uryasev, S. and G.
Zrazhevsky. The wireless network jamming problem. Journal of Combinatorial Optimization, 14:4, pp. 481-498,
2007.

1.1 Introduction
Military strategists are constantly seeking ways to increase the effectiveness of their force while reducing the risk of
casualties. In any adversarial environment, an important goal is always to neutralize the communication system of the
enemy. In this work, we are interested in jamming a wireless communication network. Specifically, we introduce and
study the problem of determining the optimal number and placement for a set of jamming devices in order to neutralize
communication on the network. This is known as the WIRELESS NETWORK JAMMING PROBLEM (WNJP). Despite
the enormous amount of research on optimization in telecommunications [23], this important problem for military
analysts has received little attention by the research community.

The organization of the chapter is as follows. Section 3.2 contains several formulations based on covering the
communication nodes with jamming devices. In Section 3.4, we use tools from graph theory to define an alternative
formulation based on limiting the connectivity index of the network nodes. Next, we incorporate percentile constraints
to develop formulations which provide solutions requiring less jamming devices, but whose solution quality favors the
exact methods. In Section 3.5, we present two case studies comparing the solutions and computation time for all
formulations. Finally, conclusions and future directions of research are addressed.

We will now briefly introduce some of the idiosyncrasies, symbols, and notations we will employ throughout this
chapter. Denote a graph G = (V,E) as a pair consisting of a set of vertices V , and a set of edges E. All graphs in
this chapter are assumed to be undirected and unweighted. We use the symbol “b := a” to mean “the expression a
defines the (new) symbol b” in the sense of [17]. Of course, this could be conveniently extended so that a statement
like “(1−ε)/2 := 7” means “define the symbol ε so that (1−ε)/2 = 7 holds.” Finally, we will use italics for emphasis
and SMALL CAPS for problem names. Any other locally used terms and symbols will be defined in the sections in
which they appear.

1.2 Coverage Formulations
Before formally defining the problem statement, we will state some basic assumptions about the jamming devices and
the communication nodes being jammed. We assume that parameters such as the frequency range of the jamming de-
vices are known. In addition, the jamming devices are assumed to have omnidirectional antennas. The communication
nodes are also assumed to be outfitted with omnidirectional antennas and function as both receivers and transmitters.
Given a graph G = (V, E), we can represent the communication devices as the vertices of the graph. An undirected
edge would connect two nodes if they are within a certain communication threshold.
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Given a set M = {1, 2, . . . ,m} of communication nodes to be jammed, the goal is to find a set of locations for
placing jamming devices in order to suppress the functionality of the network. The jamming effectiveness of device j
is calculated using d : (V × V ) 7→ R, where d is a decreasing function of the distance from the jamming device to the
node being jammed. Here we are considering radio transmitting nodes, and correspondingly, jamming devices which
emit electromagnetic waves. Thus the jamming effectiveness of a device depends on the power of its electromagnetic
emission, which is inversely proportional to the squared distance from the jamming device to the node being jammed.
Specifically,

dij :=
λ

r2(i, j)
,

where λ ∈ R is a constant, and r(i, j) represents the distance between node i and jamming device j. Without the loss
of generality, we can set λ = 1.

The cumulative level of jamming energy received at node i is defined as

Qi :=
n∑

j=1

dij =
n∑

j=1

1
r2(i, j)

,

where n is the number of jamming devices. Then, we can formulate the WIRELESS NETWORK JAMMING PROBLEM
(WNJP) as the minimization of the number of jamming devices placed, subject to a set of covering constraints:

(WNJP) Minimize n (1.1)
s.t. Qi ≥ Ci, i = 1, 2, . . . , m. (1.2)

The solution to this problem provides the optimal number of jamming devices needed to ensure a certain jamming
threshold Ci is met at every node i ∈ M. A continuous optimization approach where one is seeking the optimal
placement coordinates (xj , yj), j = 1, 2, . . . , n for jamming devices given the coordinates (Xi, Yi), i = 1, 2, . . . , m,
of network nodes, leads to highly non-convex formulations. For example, consider the covering constraint for network
node i, which is given as

n∑

j=1

1
(xj −Xi)2 + (yj − Yi)2

≥ Ci.

It is easy to verify that this constraint is non-convex. Finding the optimal solution to the resulting nonlinear program-
ming problem would require an extensive amount of computational effort.

To overcome the non-convexity of the above formulation, we propose several integer programming models for
the problem. Suppose now that along with the set of communication nodes M = {1, 2, . . . , m}, there is a fixed
set N = {1, 2, . . . , n} of possible locations for the jamming devices. This assumption is reasonable because in real
battlefield scenarios, the set of possible placement locations will likely be limited. Define the decision variable xj as

xj :=

{
1, if a jamming device is installed at location j,

0, otherwise.
(1.3)

If we redefine r(i, j) to be the distance between communication node i and jamming location j, then we have the
OPTIMAL NETWORK COVERING (ONC) formulation of the WNJP given as

(ONC) Minimize
n∑

j=1

cjxj (1.4)

s.t.
n∑

j=1

dijxj ≥ Ci, i = 1, 2, . . . , m, (1.5)

xj ∈ {0, 1}, j = 1, 2, . . . , n, (1.6)
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where Ci and dij are defined as above. Here the objective is to minimize the number of jamming devices used while
achieving some minimum level of coverage at each node. The coefficients cj in (4) represent the costs of installing a
jamming device at location j. In a battlefield scenario, placing a jamming device in the direct proximity of a network
node may be theoretically possible; however, such a placement might be undesirable due to security considerations.
In this case, the location considered would have a higher placement cost than would a safer location. If there are no
preferences for device locations, then without the loss of generality,

cj = 1, j = 1, 2, . . . , n.

Though we have removed the non-convex covering constraints, this formulation remains computationally difficult.
Notice that ONC is formulated as a MULTIDIMENSIONAL KNAPSACK PROBLEM which is known to be NP-hard in
general [10].

1.3 Connectivity Formulation
In the general WNJP, it is important that the distinction be made that the objective is not simply to jam all of the nodes,
but to destroy the functionality of the underlying communication network. In this section, we use tools from graph
theory to develop a method for suppressing the network by jamming those nodes with several communication links
and derive an alternative formulation of the WNJP. Given a graph G = (V,E), the connectivity index of a node is

Figure 1.1: Connectivity Index of nodes A,B,C,D is 3. Connectivity Index of E,F,G is 2. Connectivity Index of H is 0.

defined as the number of nodes reachable from that vertex (see Figure 1.1 for examples). To constrain the network
connectivity in optimization models, we can impose constraints on the connectivity indices instead of using covering
constraints.

We can now develop a formulation for the WNJP based on the connectivity index of the communication graph.
We assume that the set of communication nodes M = {1, 2, . . . , m} to be jammed is known and a set of possible
locations N = {1, 2, . . . , n} for the jamming devices is given. Note than in the communication graph, V ≡ M. Let
Si :=

∑n
j=1 dijxj denote the cumulative level of jamming at node i. Then node i is said to be jammed if Si exceeds

some threshold value Ci. We say that communication is severed between nodes i and j if at least one of the nodes is
jammed. Further, let y : M×M 7→ {0, 1} be a surjection where yij := 1 if there exists a path from node i to node j
in the jammed network. Lastly, let z : M 7→ {0, 1} be a surjective function where zi returns 1 if node i is not jammed.

The objective of the CONNECTIVITY INDEX PROBLEM (CIP) formulation of the WNJP is to minimize the total
jamming cost subject to a constraint that the connectivity index of each node does not exceed some pre-described level
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L. The corresponding optimization problem is given as:

(CIP) Minimize
n∑

j=1

cjxj (1.7)

s.t.
m∑

j=1
j 6=i

yij ≤ L, ∀ i ∈M, (1.8)

M(1− zi) > Si − Ci ≥ −Mzi, ∀ i ∈M, (1.9)
xj ∈ {0, 1}, ∀ j ∈ N , (1.10)
zi ∈ {0, 1} ∀ i ∈M, (1.11)
∀ i, j ∈M, yij ∈ {0, 1}, ∀ i, j ∈M, (1.12)

where M ∈ R is some large constant.
Let v : M×M 7→ {0, 1} and v′ : M×M 7→ {0, 1} be defined as follows:

vij :=

{
1, if (i, j) ∈ E,

0, otherwise,
(1.13)

and

v′ij :=

{
1, if (i, j) exists in the jammed network,

0, otherwise.
(1.14)

With this, we can formulate an equivalent integer program as

(CIP-1) Minimize
n∑

j=1

cjxj , (1.15)

s.t.
yij ≥ v′ij , ∀ i, j ∈M, (1.16)
yij ≥ yikykj , k 6= i, j; ∀ i, j ∈M, (1.17)
v′ij ≥ vijzjzi, i 6= j; ∀ i, j ∈M, (1.18)
m∑

j=1
j 6=i

yij ≤ L, ∀ i ∈M, (1.19)

M(1− zi) > Si − Ci ≥ −Mzi, ∀ i ∈M, (1.20)
zi ∈ {0, 1}, ∀ i ∈M, (1.21)

xj ∈ {0, 1}, ∀ j ∈ N , yij ∈ {0, 1} ∀ i, j ∈M, (1.22)
vij ∈ {0, 1}, ∀ i, j ∈M, v′ij ∈ {0, 1}, ∀ i, j ∈M. (1.23)

Lemma 1. If CIP has an optimal solution then, CIP-1 has an optimal solution. Further, any optimal solution x∗ of the
optimization problem CIP-1 is an optimal solution of CIP.

Proof. It is easy to establish that if i and j are reachable from each other in the jammed network then in CIP-1, yij = 1.
Indeed, if i and j are adjacent then there exists a sequence of pairwise adjacent vertices:

{(i0, i1), ..., (im−1, im)}, (1.24)

where i0 = i, and im = j. Using induction it can be shown that yi0ik
= 1, ∀ k = 1, 2, . . . ,m. From (3.12), we have

that yikik+1 = 1. If yi0ik
= 1, then by (3.13), yi0ik+1 ≥ yi0ik

yikik+1 = 1, which proves the induction step.
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The proven property implies that in CIP-1:

m∑

j=1
j 6=i

yij ≥ connectivity index of i. (1.25)

Therefore, if (x∗, y∗) and (x∗∗, y∗∗) are optimal solutions of CIP-1 and CIP correspondingly, then:

V (x∗) ≥ V (x∗∗), (1.26)

where V is the objective in CIP-1 and CIP.
As (x∗∗, y∗∗) is feasible in CIP, it can be easily checked that y∗∗ satisfies all feasibility constraints in CIP-1 (it follows
from the definition of yij in CIP). So, (x∗∗, y∗∗) is feasible in CIP-1; thus proving the first statement of the lemma.
Hence from CIP-1,

V (x∗∗) ≥ V (x∗). (1.27)

From (1.26) and (1.27):
V (x∗∗) = V (x∗). (1.28)

Let us define y such that

yij := 1 ⇔ j is reachable from i in the network jammed by x∗.

Using (1.25), (x∗, y) is feasible in CIP-1, and hence optimal. From the construction of y it follows that (x∗, y) is
feasible in CIP. Relying on (1.28) we can claim that x∗ is an optimal solution of CIP. The lemma is proved.

We have therefore established a one-to-one correspondence between formulations CIP and CIP-1. Now, we can
linearize the integer program CIP-1 by applying some standard transformations. The resulting linear 0-1 program,
CIP-2 is given as

(CIP-2) Minimize
n∑

j=1

cjxj (1.29)

s.t.
yij ≥ v′ij , ∀ i, j = 1, . . . ,M, (1.30)
yij ≥ yik + ykj − 1, k 6= i, j; ∀ i, j ∈M, (1.31)
v′ij ≥ vij + zj + zi − 2, i 6= j; ∀ i, j ∈M, (1.32)
m∑

j=1
j 6=i

yij ≤ L, ∀ i ∈M, (1.33)

M(1− zi) > Si − Ci ≥ −Mzi, ∀ i ∈M, (1.34)
zi ∈ {0, 1}, ∀ i ∈M, (1.35)

xj ∈ {0, 1}, ∀ j ∈ N , yij ∈ {0, 1} ∀ i, j ∈M, (1.36)
vij ∈ {0, 1}, ∀ i, j ∈M, v′ij ∈ {0, 1}, ∀ i, j ∈M. (1.37)

In the following lemma, we provide a proof of equivalence between CIP-1 and CIP-2.

Lemma 2. If CIP-1 has an optimal solution then CIP-2 has an optimal solution. Furthermore, any optimal solution
x∗ of CIP-2 is an optimal solution of CIP-1.

Proof. For 0-1 variables the following equivalence holds:

yij ≥ yikykj ⇔ yij ≥ yik + ykj − 1

7



The only differences between CIP-1 and CIP-2 are the constraints:

v′ij = vijzjzi (1.38)
v′ij ≥ vij + zi + zj − 2 (1.39)

Note that (3.40) implies (3.41) (vijzjzi ≥ vij + zi + zj − 2). Therefore, the feasibility region of CIP-2 includes the
feasibility region of CIP-1. This proves the first statement of the lemma.

From the last property we can also deduce that for all x1, x2 such that x1 is an optimal solution of CIP-1, and x2

is optimal for CIP-2, that
V (x1) ≥ V (x2), (1.40)

where V (x) is the objective of CIP-1 and CIP-2.

Let (x∗, y∗, v
′∗, z∗) be an optimal solution of CIP-2. Construct v

′′∗ using the following rules:

v
′′∗
ij :=

{
1, if vij + z∗i + z∗j − 2 = 1,

0, otherwise.
(1.41)

v
′∗
ij ≥ v

′′∗
ij ⇒ (x∗, y∗, v

′′∗, z∗) is feasible in CIP-2 (yij ≥ v
′′∗
ij ), hence optimal (the objective value is V (x∗), which is

optimal). Using (3.43), (v
′′∗, z∗) satisfies:

v
′′∗
ij = vijz

∗
j z∗i .

Using this we have that (x∗, y∗, v
′′∗, z∗) is feasible for CIP-1. If x1 is an optimal solution of CIP-1 then:

V (x1) ≤ V (x∗) (1.42)

On the other hand, using (3.42):
V (x∗) ≤ V (x1). (1.43)

(3.45) and (3.46) together imply V (x1) = V (x∗). The last equality proves that x∗ is an optimal solution of CIP-1.
Thus, the lemma is proved.

We have as a result of the above lemmata the following theorem which states that the optimal solution to the
linearized integer program CIP-2 is an optimal solution to the original connectivity index problem CIP.

Theorem 1. If CIP has an optimal solution then CIP-2 has an optimal solution. Furthermore, any optimal solution of
CIP-2 is an optimal solution of CIP.

Proof. The theorem is an immediate corollary of Lemma 1 and Lemma 2.

1.4 Deterministic Setup with Percentile Constraints
As we have seen, to suppress communication on a wireless network may not necessarily imply that all nodes must
be jammed. We might instead choose to constrain the connectivity index of the nodes as in the CIP formulations.
Alternatively, it may be sufficient to jam some percentage of the total number of nodes in order to acquire an effective
control over the network. The latter can be accomplished by adding percentile risk constraints to the mathematical for-
mulation. Used extensively in financial engineering applications and optimization of stochastic systems, risk measures
have also proven effective when applied to deterministic problems [18]. In this section, we review two risk measures,
namely Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) and provide formulations of the WNJP with the
incorporation of these risk measures.
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1.4.1 Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)
The Value-at-Risk (VaR) percentile measure is perhaps the most widely used in all applications of risk management
[14]. Stated simply, VaR is an upper percentile of a given loss distribution. In other words, given a specified confidence
level α, the corresponding α-VaR is the lowest amount ζ such that, with probability α, the loss is less or equal to ζ [19].
VaR type risk measures are popular for several reasons including their simple definition and ease of implementation.

An alternative risk measure is Conditional Value-at-Risk (CVaR). Developed by Rockafellar and Uryasev, CVaR
is a percentile risk measure constructed for estimation and control of risks in stochastic and uncertain environments.
However, CVaR-based optimization techniques can also be applied in a deterministic percentile framework. CVaR is
defined as the conditional expected loss under the condition that it exceeds VaR [26]. Figure 1.2 provides a graphical
representation of the VaR and CVaR concepts. As we will see, CVaR has many properties that offer nice alternatives
to VaR.

Figure 1.2: Graphical representation of Var and CVaR.

Let f(x, y) be a performance or loss function associated with the decision vector x ⊆ X ⊆ Rn, and a random
vector in y ∈ Rm. The y vector can be interpreted as the uncertainties that may affect the loss. Then, for each x ∈ X ,
the corresponding loss f(x, y) is a random variable having a distribution in R which is induced by y. We assume that
y is governed by a probability measure P on a Borel set, say Y . Therefore, the probability of f(x, y) not exceeding
some threshold value ζ is given by

ψ(x, ζ) := P{y|f(x, y) ≤ ζ}. (1.44)

For a fixed decision vector x, ψ(x, ζ) is the cumulative distribution function of the loss associated with x. This function
is fundamental for defining VaR and CVaR [19].

With this, the α-VaR and α-CVaR values for the loss random variable f(x, y) for any specified α ∈ (0, 1) are
denoted by ζα(x) and φα(x) respectively. From the aforementioned definitions, they are given by

ζα(x) := min{ζ ∈ R : ψ(x, ζ) ≥ α}, (1.45)

and
φα(x) := E{f(x, y)|f(x, y) ≥ ζα(x)}. (1.46)

Notice that the probability that f(x, y) ≥ ζα(x) is equal to 1 − α. Finally by definition, we have that φα(x) is the
conditional expectation that the loss corresponding to x is greater than or equal to ζa(x) [24].

9



The key to including VaR and CVaR constraints into a model are the characterizations of ζα(x) and φα(x) in terms
of a function Fα : X ×R 7→ R defined by

Fα(x, ζ) := ζ +
1

(1− α)
E{max {f(x, y)− ζ, 0}}. (1.47)

The following theorem, which provides the crucial properties of the function Fα follow directly from the chapter by
[24].

Theorem 2. As a function of ζ, Fα(x, ζ) is convex and continuously differentiable. The α-CVaR of the loss associated
with any x ∈ X can be determined from the formula

φα(x) = min
ζ∈R

Fα(x, ζ). (1.48)

In this formula, the set consisting of the values of ζ for with the minimum is attained, namely

Aα(x) = argmin
ζ∈R

Fα(x, ζ), (1.49)

is a nonempty, closed, bounded interval, and the α-VaR of the loss is given by

ζα(x) = left endpoint of Aα(x). (1.50)

In particular, it is always the case that

ζα(x) ∈ argmin
ζ∈R

Fα(x, ζ) and ψα(x) = Fα(x, ζα(x)). (1.51)

This result provides an efficient linear optimization algorithm for CVaR. However, from a numerical perspective,
the convexity of Fα(x, ζ) with respect to x and ζ as provided by Theorem 2 is more valuable than the convexity of
φα(x) with respect to x. As we will see in the following theorem due to [25], this allows us to minimize CVaR without
having to proceed numerically through repeated calculations of φα(x) for various decisions x.

Theorem 3. Minimizing φα(x) with respect to x ∈ X is equivalent to minimizing Fα(x, ζ) over all (x, ζ) ∈ X ×R,
in the sense that

min
x∈X

φα(x) = min
(x,ζ)∈X×R

Fα(x, ζ), (1.52)

where moreover

(x∗, ζ∗) ∈ argmin
(x,ζ)∈X×R

Fα(x, ζ) ⇔ x∗ ∈ argmin
x∈X

φα(x), ζ∗ ∈ argmin
ζ∈R

Fα(x∗, ζ). (1.53)

In the deterministic setting of the WNJP, we are not particularly interested in minimizing VaR or CVaR as it
pertains to the loss. Rather, we would like to impose percentile constraints on the optimization model in order to
handle a desired probability threshold. The following theorem from [25] provides this capability.

Theorem 4. For any selection of probability thresholds αi and loss tolerances ωi, i = 1, . . . , m, the problem

min
x∈X

g(x) (1.54)

s.t.

φαi(x) ≤ ωi, for i = 1, . . . , m, (1.55)

where g is any objective function defined on X , is equivalent to the problem

min
(x,ζ1,...,ζm)∈X×Rm

g(x) (1.56)

s.t.

Fαi(x, ζi) ≤ ωi, for i = 1, . . . , m. (1.57)

Indeed, (x∗, ζ∗1 , . . . , ζ∗m) solves the second problem if and only if x∗ solves the first problem and the inequality
Fαi(x, ζi) ≤ ωi holds for i = 1, . . . ,m.

Furthermore, φαi(x
∗) ≤ ωi holds for all i = 1, . . . , m. In particular, for each i such that Fαi(x

∗, ζ∗) = ωi, one
has that φαi(x

∗) = ωi.
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1.4.2 Percentile Constraints and the WNJP

In this section, we investigate the use of VaR and CVaR constraints when applied to the formulations of the WNJP
derived in Sections 3.2 and 3.4 above. As we have seen, risk measures are generally designed for optimization under
uncertainty. Since we are considering deterministic formulations of the WNJP, we can interpret each communication
node i ∈M as a random scenario, and apply the desired risk measures in this context.

We begin with the OPTIMAL NETWORK COVERING formulation of the WNJP. Suppose it is determined that
jamming some fraction α ∈ (0, 1) of the nodes is sufficient for effectively dismantling the network. This can be
accomplished by the inclusion of α-VaR constraints in the original model. Let y : M 7→ {0, 1} be a surjection defined
by

yi :=

{
1, if node i is jammed,
0, otherwise.

(1.58)

Recall from Section 3.2 that N = {1, . . . , n} is the set of locations for the jamming devices, and x is a binary vector
of length n where xj = 1 if a jamming device is placed at location j. Then to find the minimum number of jamming
devices that will allow for covering α · 100% of the network nodes with prescribed levels of jamming Ci, we must
solve the following integer program

(ONC-VaR) Minimize
n∑

j=1

cjxj (1.59)

s.t.
m∑

i=1

yi ≥ αm, (1.60)

n∑

j=1

dijxj ≥ Ciyi, i = 1, 2, . . . , m, (1.61)

xj ∈ {0, 1}, j = 1, 2, . . . , n, (1.62)
yi ∈ {0, 1}, i = 1, 2, . . . ,m. (1.63)

Notice that this formulation differs from the ONC formulation with the addition of the α-VaR constraint (1.60). Ac-
cording to (1.61), if yi = 1 then node i is jammed. Lastly, we have from (1.60) that at least 100 ·α% of the y variables
are equal to 1.

The optimal solution to the ONC-VaR formulation will provide the minimum number of jamming devices required
to suppress communication on at least α · 100% of the network nodes. The resulting solution may provide coverage
levels comparable to those provided by the ONC model, while potentially reducing the number of jamming devices
used. However, notice that the remaining (1 − α) · 100% of the nodes for which yi is potentially 0, there is no
guarantee that they will receive any amount of coverage. Furthermore, the addition of the m binary variables adds a
computational burden to a problem which is already NP-hard.

We can also reformulate the CONNECTIVITY INDEX PROBLEM to include Value-at-Risk constraints. Let ρ : M 7→
Z+ be a surjection where ρi returns the connectivity index of node i. That is, ρi :=

∑m
j=1,j 6=i yij . Further let

w : M 7→ {0, 1} be a decision variable having the property that if wi = 1, then ρi ≤ L. With this, the connectivity
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index formulation of WNJP with VaR percentile constraints is given as

(CIP-VaR) Minimize
n∑

j=1

cjxj (1.64)

s.t.
ρi ≤ Lwi + (1− wi)M, i = 1, 2, . . . , m, (1.65)
m∑

i=1

wi ≥ αm, (1.66)

xj ∈ {0, 1}, j = 1, 2, . . . , n, (1.67)
wi ∈ {0, 1}, i = 1, 2, . . . ,m, (1.68)
ρi ∈ {0, 1}, i = 1, 2, . . . , m, (1.69)

where M ∈ R is some large constant.
Analogous to constraints (1.60)-(1.61), constraints (1.65)-(1.66) guarantee that at least α · 100% of the nodes will

have connectivity index less than L. As with the ONC-VaR formulation, there are two drawbacks of CIP-VaR. First,
there is no control guarantee at all on any of the remaining (1 − α) · 100% nodes for which wi = 0. Secondly, the
addition of m binary variables adds a tremendous computational burden to the problem. As an alternative to VaR, we
now examine formulations of the WNJP using Conditional Value-at-Risk constraints [24].

We first consider the OPTIMAL NETWORK COVERING problem. In order to put this into our derived framework, we
need to define the loss function associated with an instance of the ONC. We introduce the function f : {0, 1}n×M 7→
R defined by

f(x, i) := Ci −
n∑

j=1

xjdij . (1.70)

That is, given a decision vector x representing the placement of the jamming devices, the loss function is defined as
the difference between the energy required to jam the network node i and the cumulative amount of energy received
at node i due to x. With this, we can formulate the ONC with the addition of CVaR constraints as the following integer
linear program:

(ONC-CVaR) Minimize
n∑

j=1

cjxj (1.71)

s.t.

ζ +
1

(1− α)m

m∑

i=1

max
{

Cmin −
n∑

j=1

xjdij − ζ, 0
}
≤ 0, (1.72)

ζ ∈ R, (1.73)
xj ∈ {0, 1}, (1.74)

where Cmin is the minimal prescribed jamming level and dij is defined as above. The expression on the left hand side
of (3.70) is Fα(x, ζ). Further, from Theorem 4 we see that constraint (3.70) corresponds to having φα(x) ≤ ω = 0
[25]. Said differently, the CVaR constraint (3.70) implies that in the (1−α) · 100% of the worst (least) covered nodes,
the average value of f(x) ≤ 0. For the case when Ci ≡ C for all i, it follows that the average level of jamming energy
received by the worst (1− α) · 100% of nodes exceeds C.

The important point about this formulation is that we have not introduced additional integer variables to the prob-
lem in order to add the percentile constraints. Recall, that in ONC-VaR we introduced m discrete variables. Since
we have to add only m real variables to replace max-expressions under the summation and a real variable ζ, this
formulation is much easier to solve than ONC-VaR.

In a similar manner, we can formulate the CONNECTIVITY INDEX PROBLEM with the addition of CVaR constraints.
As before, we need to first define an appropriate loss function. Recall that the definition of ρi, the connectivity index
of node i, is given as the number of nodes reachable from i. Then can define the loss function f ′ for a network node i
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as the difference between the connectivity index of i and the maximum allowable connectivity index L which occurs
as a result of the placement of the jamming devices according to x. That is, let f ′ : {0, 1}n ×M 7→ Z be defined by

f ′(x, i) := ρi − L. (1.75)

With this, the CIP-CVaR formulation is given as follows.

(CIP-CVaR) Minimize
n∑

j=1

cjxj (1.76)

s.t.

ζ +
1

(1− α)m

m∑

i=1

max{ρi − L− ζ, 0} ≤ 0, (1.77)

ρi ∈ Z, (1.78)
ζ ∈ R, (1.79)

where ρi is defined as above. As with the previous formulation, the expression on the left-hand side of (1.77) is
Fα(x, ζ) from (3.53). Furthermore, we have from from Theorem 4 that (1.77) corresponds to having φα(x) ≤ ω = 0.
This constraint on CVaR provides that for the (1 − α) · 100% of the worst cases, the average connectivity index will
not exceed L. Again, we see that in order to include the CVaR constraint, we only need to add (m + 1) real variables
to the problem. Computationally, CVaR provides a more conservative solution and will be much easier to solve than
the CIP-VaR formulation as we will see in the next section.

1.5 Case Studies
In order to demonstrate the advantages and disadvantages of the proposed formulations for the WNJP, we will present
two case studies. The experiments were performed on a PC equipped with a 1.4MHz Intel Pentium R© 4 processor
with 1GB of RAM, working under the Microsoft Windows R© XP SP1 operating system. In the first study, an example
network is given and the problem is modeled using the proposed coverage formulation. The problem is then solved
exactly using the commercial integer programming software package, CPLEX R©. Next, we modify the problem to
include VaR and CVaR constraints and again use CPLEX R© to solve the resulting problems. Numerical results are
presented and the three formulations are compared. In the second case study, we model and solve the problem using
the connectivity index formulation. We then include percentile constraints re-optimize. Finally, we analyze the results.

1.5.1 Coverage Formulation

Optimal Solutions Regular Constraints VaR Constraints
Number of Jammers 6 4
Level of Jamming 100% ∀ nodes 100% for 96% of nodes,

85% (of reqd.) for 4% of nodes
CPLEX R© Time 0.81 sec 0.98 sec

Table 1.1: Optimal solutions using the coverage formulation with regular and VaR constraints.

Here we present two networks and solve the WNJP using the network covering (ONC) formulation. The first
network has 100 communication nodes and the number of available jamming devices is 36. The cost of placing a
jamming device at location j, cj is equal to 1 for all locations. This problem was solved using the regular constraints
and the VaR type constraints. Recall that there is a set of possible locations at which jamming devices can be placed.
In these examples, this set of points constitutes a uniform grid over the battlespace. The placement of the jamming
devices from each solution can be seen in Figure 1.3. The numerical results detailing the level of jamming for the
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network nodes is given in Table 1.1. Notice that the VaR solution called for 33% less jamming devices than the
original problem while providing almost the same jamming quality.

Opt Solns Reg (all) VaR (.9 conf) CVaR (.7 conf)
# Jammers 9 8 7

Jamming Level 100% ∀ nodes 100% for 90% of
nodes,
72% for 10% of
nodes

100% for 57% of
nodes,
90% for 20% of
nodes,
76% for 23% of
nodes

CPLEX R© Time 15 sec 15h 55min 11sec 41 sec

Table 1.2: Optimal solutions using the coverage formulation with regular and VaR, and CVaR constraints.

In the second example, the network has 100 communication nodes and 72 available jammers. This problem was
solved using the regular constraints as well as both types of percentile constraints. The resulting graph is shown in
Figure 1.4. The corresponding numerical results are given in Table 1.2.

In this example, the VaR formulation requires 11% less jamming devices with almost the same quality as the
formulation with the standard constraints. However, this formulation requires nearly 16 hours of computation time.
The CVaR formulation gives a solution with a very good jamming quality and requires 22% less jamming devices than
the standard formulation and 11% less devices than the VaR formulation. Furthermore, the CVaR formulation requires
an order of magnitude less computing time than the formulation with VaR constraints.

Figure 1.3: Case study 1. The placement of jammers is shown when the problem is solved using the original and VaR
constraints.

14



1.5.2 Connectivity Formulation
We now present a case study where the WNJP was solved using the connectivity index formulation (CIP). The com-
munication graph consists of 30 nodes and 60 edges. The maximal number of jamming devices available is 36. We
set the maximal allowed connectivity index of any node to be 3. In Figure 1.5 we can see the original graph with
the communication links prior to jamming. The result of the VaR and CVaR solutions is seen in Figure 1.6. The
confidence level for both the VaR and CVaR formulations was 0.9. Both formulations provide optimal solutions for
the given instance. The resulting computation time for the VaR formulation was 15 minutes 34 seconds, while the
CVaR formulation required only 7 minutes 33 seconds.

1.6 Extensions and Conclusions
[6]

In this chapter we introduced the deterministic WIRELESS NETWORK JAMMING PROBLEM and provided several
formulations using node covering constraints as well as constraints on the connectivity indices of the network nodes.
We also incorporated percentile constraints into the derived formulations. Further, we provided two case studies
comparing the two formulations with and without the risk constraints.

With the introduction of this problem, we also recognize that several extensions can be made. For example, all
of the formulations presented in this chapter assume that the network topology of the enemy network is known. It is
reasonable to assume that this is not always the case. In fact, there may be little or no a priori information about the
network to be jammed. In this case, stochastic formulations should be considered and analyzed.

A generalization of the node coverage formulation including uncertainties in the number of communication nodes
and their coordinates might be considered. For the connectivity index problem, there might exist uncertainties in the
number of network nodes, their locations, and the probability that a node will recover a jammed link. Also, efficient
heuristics such as Greedy Randomized Adaptive Search Procedure (GRASP) [22], Genetic Algorithms [12], and Tabu

Figure 1.4: Case study 1 continued. The placement of jammers is shown when the problem is solved using VaR and
CVaR constraints.
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Figure 1.5: Case Study 2: Original graph.

Search [11], should be designed so that larger real-world instances can be solved. These are only a few ideas and
extensions that can be derived from this new and interesting combinatorial optimization problem.

(a) (b)

Figure 1.6: (a) VaR Solution. (b) CVaR Solution. In both cases, the triangles represent the jammer locations.

16



Chapter 2

Jamming communication networks under
complete uncertainty

This chapter presents the results published in [6] Commander, C. , Pardalos, P. , Ryabchenko, V. , Shylo, O. , Uryasev,
S. and G. Zrazhevsky. Jamming communication networks under complete uncertainty. Optimization Letters, 2:1, pp.
53-70, 2007.

2.1 Introduction
This chapter describes a problem of interdicting/jamming communication networks in uncertain environments. Jam-
ming communication networks is an important problem but has not been intensively researched despite the vast amount
of work on optimizing telecommunication systems [23]. Most papers on network interdiction are about preventing
jamming and analyzing network vulnerability [20, 9]. To our knowledge, the only literature on network interdiction
involving optimal placement of jamming devices is the work of Commander et al. [7] in which several mathematical
programming formulations were given for the deterministic WIRELESS NETWORK JAMMING PROBLEM. The only
other thoroughly studied cases are problems of minimizing the maximal network flow and maximizing the shortest
path between given nodes via arc interdiction using limited resources. Wood [27], Israeli et al. [15], and Cormican et
al. [8] studied stochastic and deterministic cases and suggested efficient heuristics. A similar setup but with a different
objective was recently studied by Held in 2005 [13].

Since most situations arise in military battlefield scenarios, exact information about the topology of the adversary’s
network is unknown. Thus, deterministic network interdiction approaches have limited applicability. In this case, a
stochastic approach involving some risk measure for evaluating the efficiency of the jamming device placement may
be helpful. However, choosing an appropriate risk measure is a challenging problem in its own right. In this chapter,
we consider an extreme case where there is no a priori information about the topology of the network to be jammed.
The only information used in our approach is a bounding area, containing the communication network.

The organization of the chapter is as follows. Section 2 gives a formal description of the problem and the jamming
model. We derive bounds and prove a convergence result for the case of complete uncertainty in Section 3. Here we
also demonstrate the advantage of the proposed method compared to the simplified case which does not account for
the cumulative effect of the jamming devices. Section 4 provides some concluding remarks.

2.2 Descriptions, Assumptions, and Definitions
In general, the problem of jamming a communication network is to determine the minimum number of jamming
devices required to interdict or suppress functionality of the network. Starting with this general statement, more
specific ones can be obtained by considering various types of jamming devices and interdiction criteria. Depending
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on the given information about the communication nodes and the network topology, stochastic or deterministic setups
can be constructed [7]. Below we provide assumptions and basic definitions of the considered framework.

We consider radio-transmitting communication networks and jamming devices operating with electromagnetic
waves. We assume that the jamming devices have omnidirectional antennas and emit electromagnetic waves in all
directions with the same intensity. We also assume that jamming power decreases reciprocally to the squared distance
from a device.

Definition 1. A point (communication node) X is said to be jammed or covered if the cumulative energy received from
all jamming devices exceeds some threshold value E:

∑

i

λ

R2(X, i)
≥ E, (2.1)

where λ ∈ R and R(X, i) represents the distance from X to jamming device i. This condition can be rewritten as:

∑

i

1
R2(X, i)

≥ 1
L2

, (2.2)

where L =
√

λ
E .

The latter inequality implies that a jamming device covers any point inside a circle of radius L.

Definition 2. A connection (arc) between two communication nodes is considered blocked if any of the two nodes is
covered.

Usually, interdiction efficiency is determined by a fraction of covered nodes and/or arcs. More complicated criteria
used are based on the amount of information transmitted through the network or the length of the shortest path between
pairs of nodes. We do not consider a specific criterium because we are interested in the case of complete uncertainty.
Thus, we are assuming that we have no knowledge of the network topology, including information about the node
coordinates.

2.3 Jamming Under Complete Uncertainty
If we ignore the cumulative effect of the jamming devices, then the problem reduces to determining the optimal
covering of an area on a plane by circles. This covering problem was solved in 1936 by Kershner [16]. The current
capter shows that accounting for the cumulative effect of all the devices can lead to significant losses in costs, i.e.
required number of jamming devices.

Since we assume no information is known about the network to be jammed, the only reasonable approach is to
cover all points in some area known to contain the network. This approach would also be appropriate when some
information about the network is available, but is potentially inaccurate.

We consider a case when a communication network is located inside a square. However, all of the following
theorems can be formulated for a more general case. For example, to obtain results when the network is contained
inside a rectangular region in the plane, the only modification required to the calculations is an appropriate updating
of the summation bounds.

An optimal covering is one which contains the minimum number of jamming devices that jam all points in the
particular area of interest. However, finding a globally optimal solution for the general problem is difficult [7]. There-
fore, we consider a subproblem of covering a square with jamming devices located at the nodes of a uniform grid. The
solution to this problem will provide a feasible solution (optimal in certain cases) to the general problem. Suppose the
grid step size is R. If the length of a square side a is not a multiple of R, then we cover a bigger square with a side of
length R([ a

R ] + 1). See Figure 2.1 for an example. The optimal solution in the considered problem is a uniform grid
with the largest possible step size which covers the square. The problem remains non-trivial, even for this simplified
setup.
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Figure 2.1: Uniform grid with jamming devices

Figure 2.2: The least covered point is shown in the lower left grid cell.

Lemma 1. For any covering of a square with a uniform grid, a point which receives the least amount of jamming
energy lies inside a corner grid cell (see Figure 2.2).

Proof. Consider a corner cell S0 and an arbitrary non-corner cell Si. We prove that for any point P ∈ Si, there is
a corresponding point P ′ ∈ S0 such that E(P ) > E(P ′), where E(X) is the cumulative jamming energy from all
devices received at point X .

Let P ′ be a symmetric correspondence of point P inside S0. Here, symmetry implies that P and P ′ are equidistant
from the sides of their respective cells. We split the square into the four rectangles A,B, C, and D, where A is the

Figure 2.3: Square Decomposition

rectangle containing cells S0 and Si (see Figure 2.3). Denote the other two corner cells of rectangle A by C1 and C2.
Let also T1 and T2 be points inside C1 and C2 respectively, such that T1PT2P

′ is a rectangle with sides parallel to the
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Figure 2.4: Equivalent Points

sides of the square as in Figure 2.4. Using symmetry we get the following relations:

E(P ′, A) = E(P, A), (2.3)
E(P ′, B) < E(T1, B) = E(P, B), (2.4)
E(P ′, D) < E(T2, D) = E(P, D), (2.5)

E(P ′, C) < E(P, C), (2.6)

where E(X, I) is the cumulative jamming energy from all devices inside rectangle I received by point X . Relations
(2.3) - (2.6) imply

E(P ′) = E(P ′, A) + E(P ′, B) + E(P ′, C) + E(P ′, D)
< E(P, A) + E(P,B) + E(P, C) + E(P,D) (2.7)
= E(P ),

and the lemma is proved.

Below we formulate theorems for upper R and lower R bounds for the optimal grid step size R∗ : R < R∗ < R.
In all formulated theorems, we consider covering a square with side length a.

Theorem 1. The unique solution of the equation

1
2R2

(
π ln(

a

R
+ 1) + π − 3

)
=

1
L2

(2.8)

is a lower bound R for the optimal grid step size R∗.

Proof. In Lemma 1, we proved that the least covered point lies inside a corner cell. Consider now a grid with step
size R. Without the loss of generality, let P (x0, y0) be a point inside the bottom left corner cell as shown in Figure
2.5. I1, I2, and I3 are cumulative jamming energy received at P by jamming devices located in regions C, A, and B
correspondingly. Similarly, I4 is the jamming energy from the jamming device located at the bottom left node O. With
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Figure 2.5: Cumulative emanation of jamming devices.

this, the jamming energy received at point P is calculated through the expression

E(P ) = I1 + I2 + I3 + I4, where (2.9)

I1 =
T−1∑

i=0

T−1∑

j=0

1
(R− x0 + i ·R)2 + (R− y0 + j ·R)2

, (2.10)

I2 =
T−1∑

i=0

1
(R− x0 + i ·R)2 + y2

0

, (2.11)

I3 =
T−1∑

j=0

1
x2

0 + (R− y0 + j ·R)2
, (2.12)

I4 =
1

x2
0 + y2

0

, (2.13)

T =
[ a

R

]
+ 1. (2.14)

Notice that we can estimate I2 + I3 as

I2 + I3 ≥ 2 ·
T−1∑

i=0

1
R2(1 + i)2 + R2

≥ 2
R2

∫ T

0

1
1 + (1 + x)2

dx. (2.15)

This follows from the fact that
N∑

i=0

f(i) ≥
∫ N+1

0

f(x)dx, (2.16)

where f(x) is a decreasing function. This property can be easily established geometrically. Notice in Figure 2.6 that
the left side of inequality (2.16) represents the shaded region in the figure, while the right side represents the area
under f(x). Continuing from (2.15) above we have

∫ T

0

1
1 + (1 + x)2

dx = arctan(T + 1)− π

4

=
π

2
− arctan

(
1

T + 1

)
− π

4
(2.17)

≥ π

4
− 1

T + 1
.
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Figure 2.6: Integral Lower Bound.

Here and further, we use the inequalities given below:

arctan(x) ≤ x, 0 ≤ x ≤ 1, (2.18)

arctan(x) ≥ x− x3

3
, 0 ≤ x ≤ 1. (2.19)

Now combining (2.15) and (2.17), we obtain

I2 + I3 ≥ 2
R2

(
π

4
− 1

T + 1

)
. (2.20)

We also have the following approximation for I4 which follows clearly

I4 ≥ 1
2R2

. (2.21)

For estimating I1 we use a property similar to (2.16), but in a higher dimension. Namely,

N∑

i=0

N∑

j=0

f(i, j) ≥
∫ N+1

0

∫ N+1

0

f(x, y)dxdy, (2.22)

where as above, f(x, y) is a decreasing function of x and y. Using this inequality, we derive the following approxi-
mation for I1.

I1 ≥
∫ T

0

∫ T

0

dxdy

(R− x0 + x ·R)2 + (R− y0 + y ·R)2

≥
∫ T

0

∫ T

0

dxdy

(R + x ·R)2 + (R + y ·R)2
(2.23)

=
1

R2

∫ T+1

1

∫ T+1

1

dxdy

x2 + y2
.
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Furthermore,
∫ T+1

1

∫ T+1

1

dxdy

x2 + y2
=

∫ T+1

1

1
x

arctan
(

T + 1
x

)
dx−

∫ T+1

1

1
x

arctan
(

1
x

)
dx

≥
∫ T+1

1

1
x

arctan
(

T + 1
x

)
dx−

∫ T+1

1

dx

x2

=
∫ T+1

1

1
x

(
π

x
− arctan

(
x

T + 1

))
dx− 1 +

1
T + 1

(2.24)

=
π

2
ln(T + 1)− 1 +

1
T + 1

−
∫ T+1

0

1
x

arctan
(

x

T + 1

)
dx

≥ π

2
ln(T + 1)− 1 +

1
T + 1

−
∫ T+1

0

1
x

(
x

T + 1

)
dx

=
π

2
ln(T + 1)− 2

(
1− 1

T + 1

)
.

Combining this result with (2.23) we have

I1 ≥ 1
R2

(
π

2
ln(T + 1)− 2

(
1− 1

T + 1

))
. (2.25)

Summing (2.20), (2.21), and (2.25) we obtain an overestimate of the total coverage at point P . That is

E(P ) ≥ 1
R2

·
(

π

2
ln(T + 1)− 2 +

2
T + 1

+
π

2
− 2

T + 1
+

1
2

)

=
1

R2

(
π

2
ln(T + 1) +

π

2
− 3

2

)
(2.26)

≥ 1
2R2

(
π · ln

( a

R
+ 1

)
+ π − 3

)
.

To guarantee coverage of point P , it is sufficient to claim that

f(R) =
1

2R2

(
π · ln

( a

R
+ 1

)
+ π − 3

)
≥ 1

L2
. (2.27)

Since f(R) is monotonically decreasing on (0, +∞), the largest R satisfying the above inequality is the unique
solution R of the equation

f(R) =
1
L2

. (2.28)

Thus, a uniform grid with step size R jams any point P inside a corner cell. According to Lemma 1, the grid jams the
least covered point in the square implying that the whole square is jammed. Thus we have the desired result.

Since the function f(R) = 1
2R2 (π ln( a

R + 1) + π − 3) is monotonic, equation (2.8) can be easily solved using
a numerical procedure such as a binary search. Therefore, using (2.8), we can obtain a step size R such that the
corresponding uniform grid covers the entire square. Further, the number of jamming devices in the grid does not
exceed

N1 =
(

a

R
+ 2

)2

. (2.29)

A more straightforward solution of the initial problem could be based on the property that a jamming device covers all
the points inside a circle of radius L as mentioned in Definition 1. Using that, we could reduce the problem to finding
the optimal covering of a square with circles of radius L. A direct result from [16] (that was mentioned in [20]) is that
in the limit, the minimum number of circles to cover an area a2 is

N2 =
2a2

3
√

3L2
. (2.30)
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To compare the approaches, we consider the ratio

N2

N1
=

(
R

L2

)
2

3
√

3
1

(1 + 2R
a )2

=
2x2

3
√

3
1

(1 + 2x
k )2

, (2.31)

where x = R
L and k = a

L . Using these substitutions, equation (2.8) can be rewritten in terms of variables x and k as
follows

1
x2

(
π ln

(
k

x
+ 1

)
+ π − 3

)
= 2. (2.32)

By solving (2.32) for different values of k, one can find corresponding values of x and N2
N1

. To evaluate the advantage
of the uniform grid approach over the naive one, we provide some computational results in the Table 2.1. From the

k x N2
N1

102 2.44 2.3
104 3.54 4.8
106 4.40 7.5
108 5.14 10.2

Table 2.1: Comparing N2
N1

for various values of k.

table, we see that as k increases, the advantage of using our approach becomes more significant. In fact, it can be
proved that lima→∞ N2

N1
= ∞. This will follow as a corollary of Theorem 3.

To establish the quality of the lower bound rigorously, we need to first establish a similar result for an upper bound.
This follows in the next theorem.

Theorem 2. The unique solution of the equation

1
R2

(
π

2
ln

(
2a

R
+ 1

)
− 1

6( a
R + 1)

+
π

2
+

19
3

)
=

1
L2

(2.33)

is an upper bound R of the optimal grid step size R∗.

Proof. Let P (x0, y0) be the least jammed point, that lies inside a corner cell according to Lemma 1. Without the
loss of generality, as in the proof of Theorem 1, we assume that P is inside the bottom left corner cell. The jamming
energy received at point P is calculated through the expressions (2.9) - (2.14). Since P is the least covered point, the
following inequality holds.

E(P ) ≤ E

(
P ′

(
x =

R

2
, y = 0

))
= I ′1 + I ′2 + I ′3 + I ′4, where (2.34)

I ′1 =
T−1∑

i=0

T−1∑

j=0

1
(R

2 + i ·R)2 + (R + j ·R)2
, (2.35)

I ′2 =
T−1∑

i=0

1
(R

2 + i ·R)2
, (2.36)

I ′3 =
T−1∑

j=0

1
(R

2 )2 + (R + j ·R)2
, (2.37)

I ′4 =
1

(R
2 )2

. (2.38)
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I ′2 and I ′3 can be estimated through integrals similarly to the techniques used in the proof of Theorem 1. The following
inequality holds

N∑

i=1

f(i) ≤
∫ N

0

f(x)dx, (2.39)

where f(x) is a decreasing function. This property can also be proven geometrically. Figure 2.7 represents a graphical
interpretation of this relation. The left side of the inequality is represented by the shaded area. The right side of (2.39)

Figure 2.7: Integral Upper Bound.

is the area under f(x). With this property we have from (2.36) that

I ′2 ≤ 1
(R

2 )2
+

∫ T−1

0

dx

(R
2 + x ·R)2

=
1

R2

(
6− 1

T − 1
2

)
. (2.40)

Furthermore, using inequalities (2.18) and (2.19), we see that (2.37) is estimated by

I ′3 ≤ 1
(R

2 )2 + (R + x ·R)2

=
2

3R2
+

2
R2

(
arctan

(
1
2

)
− arctan

(
1

2T

))

≤ 2
3R2

+
2

R2

(
1
2
− 1

2T
+

1
24T 3

)
(2.41)

=
1

R2

(
5
3
− 1

T
+

1
12T 3

)
.

To estimate I ′1 a property similar to (2.39) can be used. This inequality is given by

N∑

i=1

N∑

j=1

f(i, j) ≤
∫ N

0

∫ N

0

f(x, y)dxdy +
∫ N

0

f(x, 0)dx +
∫ N

0

f(0, y)dy, (2.42)

where f(x, y) is a decreasing function of x and y. With the above inequality,

I ′1 ≤ 1

(R
2

2
) + R2

+
∫ T−1

0

dx

(R
2 )2 + (R + x ·R)2

+
∫ T−1

0

dx

(R
2 + x ·R)2 + R2

+

+
∫ T−1

0

∫ T−1

0

dxdy

(R
2 + x ·R)2 + ((R + y ·R)2

=
4

5R2
+

C

R2
+

1
R2

∫ T−1

0

∫ T−1

0

d(x + 1
2 )dy

( 1
2 + x)2 + (y + 1)2

, where (2.43)
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C = 2 arctan(2T )− arctan(2) + arctan
(

T − 1
2

)
− π

2

=
π

2
− 2 arctan

(
1

2T

)
+ arctan

(
1
2

)
− arctan

(
2

2T − 1

)
(2.44)

≤ π

2
− 2

(
1

2T
− 1

24T 3

)
+

1
2
−

(
2

2T − 1
− 8

3(2T − 1)3

)

≤ π + 1
2

.

The double integral in (2.43) is bounded as follows

∫ T−1

0

∫ T−1

0

d(x + 1
2 )dy

( 1
2 + x)2 + (y + 1)2

=
∫ T− 1

2

1
2

∫ T

1

dtdy

t2 + y2

=
∫ T− 1

2

1
2

1
t

(
arctan

(
T

t

)
− arctan

(
1
t

))
dt

≤
∫ T− 1

2

1
2

1
t

(
π

2
− arctan

(
t

T

))
dt−

∫ T− 1
2

1
2

1
t

(
1
t
− 1

3t3

)
dt (2.45)

≤ π

2

(
ln

(
T − 1

2

)
− ln

(
1
2

))
−

∫ T− 1
2

1
2

1
t

(
t

T
− t3

3T 3

)
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−
(

4
3
− 1

T − 1
2

+
1

6(T − 1
2 )2

)

=
π

2
ln(2T − 1)− 20

3
+

5
6T

+
1

12T 2
− 1

36T 3
+

1
T − 1

2

− 1
6(T − 1

2 )2

<
π

2
ln(2T − 1)− 20

3
+

5
6T

+
1

T − 1
2

− 1
12(T − 1

2 )2
.

Combining the results from (2.43), (2.44), and (2.45) gives the overestimate for I ′1 as

I ′1 <
1

R2

(
π

2
ln(2T − 1) +

π

2
− 16

3
+

5
6T

+
1

T − 1
2

− 1
12(T − 1

2 )2

)
. (2.46)

Recall equation (2.34) stated E(P ) ≤ I ′1 + I ′2 + I ′3 + I4. So using the expression for I ′4 given in (2.38) and the
overestimates for I ′1, I

′
2, and I ′3 derived in equations (2.46), (2.40), and (2.41) respectively, we obtain

E(P ) ≤ 1
R2

(
π

2
ln(2T − 1)− 1

6T
+

π

2
+

19
3

)
. (2.47)

Finally, if we let T = [ a
R ] + 1 ≤ a

R + 1, we get

E(P ) <
1

R2

(
π

2
ln

(
2a

R
+ 1

)
− 1

6( a
R + 1)

+
π

2
+

19
3

)
(2.48)

The function f(R) = 1
R2

(
π
2 ln

(
2a
R + 1

)− 1
6( a

R +1) + π
2 + 19

3

)
is monotone, hence the equation f(R) = 1

L2 has a

unique solution R. Equation (2.48) implies that a grid with step size R does not cover the entire square. That is, there
exists at least one point P that remains uncovered. Thus R is an upper bound for the optimal grid covering problem.
Since the optimal grid step size R∗ < R, the theorem is proved.

In Figure 2.8, we see an example in which we are covering at 40 × 40 square and the required jamming level at
each point is 3.0 units. In part (a), we see the coverage associated with the required number of devices from the lower
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bound of Theorem 2. In this case, 202 = 400 jamming devices are used to cover the area. Notice that there are no holes
in the region. This, together with the scallop shell outside the bounding box indicates that all points within the region
are covered. In part (b), we see the coverage corresponding to the placement of the jamming devices on a uniform
grid according to the upper bound of Theorem 3. Here, the required number of devices is 192 = 361. Notice the
holes located at the four corners of the region indicating that these points are uncovered. This validates the theoretical
results obtained in Theorem 2 and Theorem 3.
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Figure 2.8: (a) The coverage when jamming devices are placed according to the lower bound from Theorem 2. The
total number of jamming devices required is 202 = 400. (b) We see the coverage associated with the result obtained
from Theorem 3. In this case, 192 = 361 devices are placed. Notice the corner points are not jammed.

Now that we have established both upper and lower bounds for an optimal grid step size, we can determine the
quality of the bounds. The result is obtained in the following theorem.

Theorem 3.

lim
a→∞

R

R
= 1, (2.49)

where R and R are bounds obtained from equations (2.8) and (2.33), correspondingly. Moreover, the following
inequality holds:

1 ≤ R

R
≤

√
1 +

c

ln(a)
, (2.50)

for constants M ∈ R, c ∈ R, such that R > M .

Proof. By letting x = R
L and y = R

L , equations (2.8) and (2.33) can be respectively rewritten as

a = L · x
(
e

2
π (x2+ 3

2 )−1 − 1
)

, and (2.51)

π

2
ln

(
2a

L · y + 1
)

= y2 − 19
3
− π

2
+

L · y
6(a + L · y)

. (2.52)

To prove the theorem, we need to show that
lim

a→∞
y

x
= 1, (2.53)
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where x > 0 and y > 0 are solutions of (2.51) and (2.52), correspondingly. From (2.52), we obtain

π

2
ln

(
2a

L · y + 1
)

> y2 − C1, where (2.54)

C1 =
19
3

+
π

2
, and (2.55)

a >
L · y

2

(
e

2
π (y2−C1) − 1

)
. (2.56)

From (2.51) and (2.56) we see that

x
(
e

2
π (x2+C2) · C3 − 1

)
>

y

2

(
e

2
π (y2−C1) − 1

)
, where (2.57)

C2 =
3
2
, and (2.58)

C3 = e−1. (2.59)

Since y · L and x · L are upper and lower bounds, correspondingly, the following relation holds

y

x
> 1. (2.60)

With (2.51) and (2.60) above, we can also conclude that

lim
a→∞

x = ∞ and lim
a→∞

y = ∞. (2.61)

For all M ∈ IR, where M >
√

C1, there exists Q ∈ IR such that (2.57) can be reduced to

y

x
< Q · e 2

π (x2−y2), and y > M. (2.62)

Moreover, for c = π
2 ln(Q) the following inequality holds

(y

x

)2

− 1 ≤ c

x2
, and y > M. (2.63)

Assume for the sake of contradiction that the inequality in (2.63) does not hold for some (x∗, y∗). That is assume that(
y∗

x∗

)2

− 1 > c
x∗2 . Using (2.62) we have

y∗

x∗
< Q · e− 2

π x∗2
(
( y∗

x∗ )2−1
)

< Q · e− 2
π x∗2· c

x∗2 = 1, (2.64)

which contradicts (2.60).
Applying (2.60) and (2.63) we get

1 <
y

x
≤

√
1 +

c

x2
, and y > M. (2.65)

Letting a tend to ∞ and taking (2.61) into account, we see that in fact

lim
a→∞

y

x
= 1. (2.66)

Finally, by using (2.65) and (2.51), the following relation can be obtained

1 <
y

x
≤

√
1 +

k

ln(a)
, (2.67)

for some constant k ∈ IR, when y > M . Thus, the theorem is proved.
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2.4 Conclusion
In this chapter, we introduced the problem of jamming a communication network under complete uncertainty. We
examined the case when the network is known to lie in a square with area a2. We derived upper and lower bounds
for the optimal number of jamming devices required when they are located at the vertices of a uniform grid. We also
provided a convergence result indicating that the proposed bounds are tight. Furthermore, we proved that our approach
is more efficient than the solution provided by optimally covering the square with circles of radius L.
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Chapter 3

Robust Wireless Network Jamming
Problems

This chapter presents the results published in [5] C.W. Commander, P.M. Pardalos, V. Ryabchenko, S. Sarykalin, T.
Turko, and S. Uryasev. Robust wireless network jamming problems. C.W. Commander, M.J. Hirsch, R.A. Murphey,
and P.M. Pardalos (editors), Optimization and Cooperative Control Strategies, Lecture Notes in Control and Informa-
tion Sciences, Springer, 2008.

3.1 Introduction
Research on suppressing and eavesdropping communication networks has seen a surge recently in the optimization
community. Two recent papers by Commander et al. [6, 7] represent the current state-of-the-art. These problems have
several important military applications and represent a critical area of research as optimization of telecommunication
systems improve technological capabilities [23]. In [6], the authors develop lower and upper bounds for the optimal
number of wireless jamming devices required to suppress a network contained in a given area such as a map grid. In
this work, there were no a priori assumptions made about the topology of the network to be jammed other than the
geographical region in which it was contained. This problem is particularly important in the global war on terrorism as
improvised explosive devices (IEDs) continue to plague the coalition forces. In fact, IEDs account for approximately
65% of all combat injuries in Iraq [21]. These homemade bombs are almost always detonated by some form of radio
frequency device such as cellular telephones, pagers, and garage door openers. The ability to suppress radio waves in
a given region will help prevent casualties resulting from IEDs [4].

In [7] the WIRELESS NETWORK JAMMING PROBLEM was introduced and several formulations derived. In the
WNJP the topology of the network is assumed and various objectives can be considered from jamming all the com-
munication nodes to constraining the connectivity index of the nodes. In this chapter, we introduce robust variants
of those formulations which account for the fact that the exact topology of the network to be jammed may not be
known entirely. Particularly, we consider instances in which several topologies are considered likely, and develop
robust scenarios for placing jamming devices which are able to suppress the network regardless of which candidate
topology is realized. The overarching goal is to develop robust formulations with respect to the uncertainties in the
information about the network. These models will provide a more realistic interpretation of combat scenarios in urban
and dynamic environments.

The organization of the chapter is as follows. In Section 3.2, we derive several formulations of the ROBUST
WIRELESS NETWORK JAMMING PROBLEM (R-WNJP). In Section 3.3, we review several percentile measures and
incorporate percentile constraints into the models in Section 3.4. The results of several case studies are presented in
Section 3.5 and the results are analyzed. We conclude with directions of future research.
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Figure 3.1: Example network shown with potential jamming device locations.

3.2 Problem Formulations
Denote a graph G = (V, E) as a pair consisting of a set of vertices V , and a set of edges E. All graphs in this chapter
are assumed to be undirected and unweighted. We use the symbol “b := a” to mean “the expression a defines the
(new) symbol b” in the sense of King [17]. Finally, we will use italics for emphasis and SMALL CAPS for problem
names.

We assume that the communication network to be jammed comprises a set M = {1, 2, . . . , m} of radio devices
which are outfitted with omnidirectional antennas and function as both transmitters and receivers as in [7]. Further we
assume that the coordinates of the nodes and various parameters such as the frequency range are given by probability
distributions. For example, we can assume that a Kalman filter provides some estimates of the locations of the nodes.
In a deterministic setup, the topology which represents the communication pattern could be represented by a graph in
which an edge connects two nodes if they are within a certain communication threshold.

As for the set of jamming devices, we assume that they too are outfitted with omnidirectional antennas that the
effectiveness of a jamming device on a communication node is inversely proportional to their distance squared. Sup-
pose that the set of jamming devices is giving by N = {1, 2, . . . , n}, and we are given a set potential locations in
which to place them. Figure 3.1 provides an example of the communication network and the potential jamming device
locations. Moreover, each potential location j has an associated cost cj , j = 1, 2, . . . , n. We can describe the jamming
power received by network node i located at a point (ξi, ηi) ∈ IR × IR, from jamming device j ∈ N located at (x, y)
is given by

dj(ξi, ηi) ≡ dij :=
λ

(xj − ξi)2 + (yj − ηi)2
, (3.1)

where λ ∈ IR is a constant. Without the loss of generality, we can let λ = 1. We say that node i ∈ M located at
(ξi, ηi) is jammed if the total energy received at this point from all jamming devices exceeds some threshold value Ci

for all i ∈M. That is, node i ∈M is jammed if

n∑

j=1

dj(ξi, ηi) ≥ Ci. (3.2)

As mentioned above, we are considering robust formulations of the WNJP. Since the exact locations of the
network nodes are unknown, we assume that a set of intelligence data has been collected and from that a set S
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Figure 3.2: Four example scenarios are shown.

of the most likely scenarios have been compiled. We assume that for scenario s ∈ S both the node locations
{(ξs

1, η
s
1), (ξ

s
2, η

s
2), . . . , (ξ

s
m, ηs

m)} and the set of jamming thresholds {Cs
1 , Cs

2 , . . . , Cs
m} are modeled in these sce-

narios. For each scenario s ∈ S , we do not assume that the number of communication devices to jammed are equal.
Therefore, we define for each scenario s ∈ S , the set Ms = {1, 2, . . . , ms} which represents the set of nodes to be
jammed. For example, the networks shown in Figure 3.2 represent a set of possible topologies for the network to be
jammed.

3.2.1 The Robust Connectivity Index Problem
Given a graph G = (V,E), the connectivity index of a node is defined as the number of nodes reachable from
that vertex. The first formulation of the WNJP we consider imposes constraints on the connectivity indices of the
network nodes. The connectivity index of a network vertex is defined as the number of nodes reachable from that
vertex. The degree to which the connectivity index of a given node is constrained may be determined by its relative
importance or how crucial it is for maintaining connectivity among many components. It is at the discretion of the
analyst whether to assign arbitrary values to each node or use some heuristic for determining a relative importance.
One way to determine the connectivity indices is to identify the so-called critical nodes of the graph and impose
relatively tighter constraints on these nodes. Critical nodes are those vertices whose removal from the graph induces
a set of disconnected components whose sizes are minimally variant [1]. Critical node detection has been recently
applied to interdicting wired communication networks [4], to network security applications [2], and most recently to
the analysis of protein-protein interaction networks in the context of computational drug design [3].

Suppose for example that for the scenarios shown in Figure 3.2 the maximum allowable connectivity index is set
to 3 for each node. Then the objective of the ROBUST CONNECTIVITY INDEX PROBLEM (RCIP) is to determine the
minimum number and locations for the jamming devices so that each node has no more than 3 neighbors in each of
the four scenarios presented. Figure 3.3 provides an example solution for this case.

Suppose that communication between two nodes in the communication graph is said to be severed if at least one
of the nodes is jammed. Then the objective of the ROBUST CONNECTIVITY INDEX PROBLEM (RCIP) is to determine
the minimum required jamming devices such that the connectivity index of each node i in each scenario s does not
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Figure 3.3: The optimal solution for the networks in Figure 3.2 is given for the case when the maximum connectivity
index is 3 for all nodes.

exceed some predefined values Ls
i . In order to define the corresponding mathematical formulation we must define the

following functions. First let ys : Ms ×Ms 7→ {0, 1} be a surjection where ys
ij := 1 if there exists a path from

node i to node j in the jammed network according to scenario s ∈ S . Next let the function zs : Ms 7→ {0, 1} be a
surjective function where zs

i returns 1 if node i is not jammed in scenario s ∈ S . Finally, let xi, i = 1, . . . , n be a set
of decision variables where xi := 1 if a jamming device location i is utilized. If ck and dij are defined as above, then
we can formulate the S-CIP as the following optimization problem.

(RCIP) min
n∑

k=1

ckxk (3.3)

s.t.
ms∑

j=1
j 6=i

ys
ij ≤ Ls

i , ∀ i ∈Ms, ∀ s ∈ S, (3.4)

M(1− zs
i ) >

n∑

k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ i ∈Ms, ∀ s ∈ S, (3.5)

xj ∈ {0, 1}, ∀ j ∈ N , (3.6)
zs
i ∈ {0, 1}, ∀ i ∈Ms, (3.7)

ys
ik ∈ {0, 1}, ∀ i, k ∈Ms, ∀ s ∈ S, (3.8)

where M ∈ R is some large constant.
In a manner similar to that shown in [7], we can formulate an equivalent integer programming formulation as

follows. First let vs : Ms ×Ms 7→ {0, 1} and vs′ : Ms ×Ms 7→ {0, 1} be respectively defined as

vs
ij :=

{
1, if (i, j) ∈ Es,

0, otherwise,
(3.9)
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and

vs′
ij :=

{
1, if (i, j) exists in the jammed network of scenario s,

0, otherwise.
(3.10)

An equivalent integer program is then given by

(RCIP-1) min
n∑

k=1

ckxk, (3.11)

s.t.
ys

ij ≥ vs′
ij , ∀ i, j ∈Ms, ∀ s ∈ S, (3.12)

ys
ij ≥ ys

ikys
kj , k 6= i, j; ∀ i, j ∈Ms, ∀ s ∈ S, (3.13)

vs′
ij ≥ vs

ijz
s
j z

s
i , i 6= j; ∀ i, j ∈Ms, ∀ s ∈ S, (3.14)

m∑

j=1
j 6=i

ys
ij ≤ Ls

i , ∀ i ∈Ms, ∀ s ∈ S, (3.15)

M(1− zs
i ) >

n∑

k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ i ∈Ms, ∀ s ∈ S, (3.16)

xj ∈ {0, 1}, ∀ j ∈ N , (3.17)
zs
i ∈ {0, 1}, ∀ i ∈Ms, ∀ s ∈ S, (3.18)

ys
ij ∈ {0, 1} ∀ i, j ∈Ms, ∀ s ∈ S, (3.19)

vs
ij ∈ {0, 1}, ∀ i, j ∈Ms, ∀ s ∈ S, (3.20)

vs′
ij ∈ {0, 1}, ∀ i, j ∈Ms, ∀ s ∈ S. (3.21)

We establish the equivalence of formulations RCIP and RCIP-1 in the following theorem. The proof follows
similarly to a result for the single scenario problem in [7].

Theorem 5. If RCIP has an optimal solution, then RCIP-1 has an optimal solution. Furthermore, any optimal solution
x∗ of the integer programming problem RCIP-1 is an optimal solution of the optimization problem RCIP.

Proof. It is easy to see that if communication nodes i and j are reachable in the jammed network of a given scenario
s ∈ S , then ys

ij = 1 in RCIP-1. Indeed if i and j are reachable, then there exists a sequence of pairwise adjacent
vertices

{(i0, i1), . . . , (im−1, im)}, (3.22)

where i0 = i and im = j. By inducting along the vertices, we can establish the fact that ys
i0,ik+1

= 1 for all
k = 1, . . . , m. To do this, first note that from (3.12) we have that ys

ik,ik+1
= 1. Then if ys

i0,ik
= 1, then by (3.13) we

have that
ys

i0,ik+1
≥ ys

i0,ik
ys

ik,ik+1
= 1. (3.23)

This completes the induction step. Thus far we have shown that

m∑

j=1
j 6=i

ys
ij ≥ connectivity index of node i.

Let F be the objective function in RCIP-1 and RCIP. Furthermore, suppose (x∗, y∗) and (x̂∗, ŷ∗) represent optimal
solutions for each formulation respectively. Then so far, we have confirmed that

F (x∗) ≥ F (x̂∗). (3.24)
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It is easy to verify that (x̂∗, ŷ∗) is feasible in RCIP-1. This follows from the definition of ys
ij in RCIPand the fact

that (x̂∗, ŷ∗) satisfies the feasibility constraints in RCIP. This proves the first statement of the theorem. Hence from
RCIP-1, we have that

F (x∗) ≤ F (x̂∗). (3.25)

Therefore using (3.24) and (3.25), we have
F (x∗) = F (x̂∗). (3.26)

Now define ys such that

ys
ij := 1 ⇔ j is reachable from i when scenario s is jammed by x∗. (3.27)

Using the above results, we know that (x∗, ys) is feasible in RCIP-1, and hence optimal. Also from the construction of
ys it follows that (x∗, ys) is feasible in RCIP. According to (3.26), we can conclude that x∗ is also optimal for RCIP.
Thus the theorem is proved.

With the previous theorem, we have established a one-to-one correspondence between the two formulations. By
using some standard techniques, we can now reformulate RCIP-1 into the following integer linear program

(RCIP-2) min
n∑

k=1

ckxk (3.28)

s.t.
ys

ij ≥ vs′
ij , ∀ i, j = 1, . . . ,Ms, ∀ s ∈ S, (3.29)

ys
ij ≥ ys

ik + ys
kj − 1, k 6= i, j; ∀ i, j ∈Ms, ∀ s ∈ S, (3.30)

vs′
ij ≥ vs

ij + zs
j + zs

i − 2, i 6= j; ∀ i, j ∈Ms, ∀ s ∈ S, (3.31)
m∑

j=1
j 6=i

ys
ij ≤ Ls

i , ∀ i ∈Ms, ∀ s ∈ S, (3.32)

M(1− zs
i ) >

n∑

k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ i ∈Ms, ∀ s ∈ S, (3.33)

xj ∈ {0, 1}, ∀ j ∈ N , (3.34)
zs
i ∈ {0, 1}, ∀ i ∈Ms, ∀ s ∈ S, (3.35)

ys
ij ∈ {0, 1} ∀ i, j ∈Ms, ∀ s ∈ S, (3.36)

vs
ij ∈ {0, 1}, ∀ i, j ∈Ms, ∀ s ∈ S, (3.37)

vs′
ij ∈ {0, 1}, ∀ i, j ∈Ms, ∀ s ∈ S. (3.38)

Theorem 6. If RCIP-1 has an optimal solution, then RCIP-2 has an optimal solution. Further, any optimal solution
x∗ of RCIP-2 is an optimal solution of RCIP-1.

Proof. For binary variables, notice that the following equivalence holds

ys
ij ≥ ys

ikys
kj ⇔ ys

ij ≥ ys
ik + ys

kj − 1. (3.39)

Then the only other difference between the two formulations are the two constraints:

vs′
ij = vs

ijz
s
j z

s
i (3.40)

vs′
ij ≥ vs

ij + zs
i + zs

j − 2 (3.41)

In the similar manner as in (3.39) above, it is easy to verify that (3.40) implies (3.41). Therefore the feasible region of
RCIP-2 includes the feasible region of RCIP-1. With this we have the first statement of the theorem.
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As in the previous proof, let F represent the objective function in RCIP-1 and RCIP-2 and let x∗ and x̂∗ represent
respective optimal solutions. Then it follows that

F (x∗) ≥ F (x̂∗). (3.42)

Let (x∗, ys∗, v
′s∗, zs∗) be an optimal solution for formulation RCIP-2. Now, define v

′′s∗ as follows:

v
′′s∗
ij :=

{
1, if vs

ij + zs∗
i + zs∗

j − 2 = 1,

0, otherwise.
(3.43)

Notice that if v
′s∗
ij ≥ v

′′s∗
ij then (x∗, ys∗, v

′′s∗, zs∗) is feasible in RCIP-2 according to constraint (3.29) (i.e., ys
ij ≥

v
′′s∗
ij ). Furthermore, (x∗, ys∗, v

′′s∗, zs∗) is optimal in RCIP-2 as the the objective value is F (x∗), which is optimal by
definition. Using (3.43), (v

′′s∗, zs∗) satisfies:

v
′′s∗
ij = vs

ijz
s∗
j zs∗

i . (3.44)

Using this we have that (x∗, ys∗, v
′′s∗, zs∗) is feasible for RCIP-1. If x̂∗ is an optimal solution of RCIP-1 then it follows

that
F (x̂∗) ≤ F (x∗) (3.45)

On the other hand, we have shown in (3.42) above, that

F (x∗) ≤ F (x̂∗). (3.46)

(3.45) and (3.46) together imply F (x1) = F (x∗). The last equality proves that x∗ is an optimal solution of RCIP-1.
Thus, the theorem is proved.

Finally, we have the following theorem which establishes the equivalence between the optimization problem RCIP
and the integer linear programming formulation RCIP-2 [7].

Theorem 7. If RCIP has an optimal solution, then RCIP-2 has an optimal solution. Moreover, any optimal solution of
RCIP-2 is an optimal solution of RCIP.

Proof. The proof follows directly from Theorem 5 and Theorem 6.

3.2.2 Robust Node Covering Problem
What follows is a robust formulation of the OPTIMAL NODE COVERING problem presented in WNJP. As before, we
are givenMs, the set of nodes to be jammed. We are also given the set of potential locations for the jamming devices,
N . For the ROBUST NETWORK COVERING PROBLEM (RNCP) is to minimize the number of jamming devices required
to suppress communication on all of the nodes for each of the scenarios. Recall from Equation (3.2) that a node in
a given scenario is said to be suppressed if the cumulative amount of energy received by that node from all jamming
devices exceeds some threshold level. Let ck, ds

ik, and Cs
i be as defined in the previous subsection. Also, recall that

the decision variable xk := 1 if a jamming device is installed at location k ∈ N . With this, we can formulate the
RNCP as follows.

(RNCP) min
n∑

k=1

ckxk, (3.47)

s.t.
n∑

k=1

ds
ikxk ≥ Cs

i , i = 1, 2, . . . , ms, s = 1, 2, . . . , S, (3.48)

xk ∈ {0, 1}, k = 1, 2, . . . , n, (3.49)
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The RNCP is NP-hard which can be easily shown by a reduction from the MULTIDIMENSIONAL KNAPSACK
PROBLEM [10]. With this in mind, we recognize that solving large-scale instances is unreasonable, thus we must seek
alternative solution methods. One possible way of doing this is accepting the fact that jamming a sufficient percentage
of the network nodes will suffice given the intractability of the problem. We move along now and examine the R-WNJP
with the inclusion of percentile constraints.

3.3 Percentile Constraints
As demonstrated in the seminal chapter on deterministic network jamming problems [7], it is often the case that a
network can be sufficiently neutralized by suppressing communication on a fraction of the total nodes. This can be
accomplished by the inclusion of percentile constraints into a mathematical model. In this section, we review two
commonly used risk measures and derive formulations of the RCIP and a robust node covering problem.

3.3.1 Review of Value at Risk (VaR) and Conditional Value at Risk (CVaR)
The first percentile constraint we examine is the simplest risk measure used in optimization of robust systems and
is known as the Value at Risk (VaR) measure [14]. VaR provides an upper bound, or percentile on a given loss
distribution. For example, consider an application in which a constraint must be satisfied within a specific confidence
level α ∈ [0, 1]. Then the corresponding α-VaR value is the lowest value ζ such that with probability α, the loss does
not exceed ζ [19]. In economic terms, VaR is simply the maximum amount at risk to be lost from an investment. VaR
is the most widely applied risk measure in stochastic settings primarily because it is conceptually simple and easy to
incorporate into a mathematical model [7]. However with this ease of use come several complicating factors as we
will soon see. Some disadvantages of VaR are that the inclusion of VaR constraints adds to the number of discrete
variables in a problem. Also, VaR is not a so-called coherent risk measure, implying among other things that it is not
sub-additive.

Another commonly applied risk measure is the so-called Conditional Value-at-Risk (CVaR) developed by Rock-
afellar and Uryasev [24]. CVaR is a more conservative measure of risk, defined as the expected loss under the condition
that VaR is exceeded. A graphical representation of the relationship between CVaR and VaR is shown in Figure 1.2.
In order to define CVaR and Var we need to determine the cumulative distribution function for a given decision vector
subject to some uncertainties. Suppose f(x, y) is a performance (or loss) function associated with a decision vector
x ∈ X ⊆ Rn, and a random vector y ∈ Rm which is the uncertainties that may affect the performance. Assume
that y is governed by a probability measure P on a Borel set, say Y [7]. Then, the loss f(x, y) for each x ∈ X is a
random variable having a distribution in R induced by y. Then the probability of f(x, y) not exceeding some value ζ
is defined as

ψ(x, ζ) := P{y|f(x, y) ≤ ζ}. (3.50)

By fixing x, the cumulative distribution function of the loss associated with the decision x is thus given by ψ(x, ζ)
[26].

Given the loss random variable f(x, y) and any α ∈ (0, 1), we can use equation (3.50) to define α-VaR as

ζα(x) := min{ζ ∈ R : ψ(x, ζ) ≥ α}. (3.51)

From this we see that the probability that the loss f(x, y) exceeds ζα(x) is 1 − α. Using the definition above, CVaR
is the conditional expectation that the loss according to the decision vector x dominates ζα(x) [24]. Thus we have
α-CVaR denoted as φα(x) defined as

φα(x) := E{f(x, y)|f(x, y) ≥ ζα(x)}. (3.52)

In order to include CVaR and VaR constraints in optimization models we must characterize ζα(x) and φα(x) in
terms of a function Fα : X ×R 7→ R defined by

Fα(x, ζ) := ζ +
1

(1− α)
E{max {f(x, y)− ζ, 0}}. (3.53)
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In the seminal paper on CVaR [24], Rockafellar and Uryasev prove that as a function of ζ, Fα(x, ζ) is convex and
continuously differentiable. Moreover, they show that α-CVaR of the loss associated with any x ∈ X , i.e. φα(x),
is equal to the global minimum of Fα(x, ζ), over all ζ ∈ R. Further, if Aα(x) = argminζ∈R Fα(x, ζ) is the set
consisting of the values of ζ for which F is minimized, then Aα(x) is a non-empty, closed and bounded interval
and ζα(x) is the left endpoint of Aα(x). In particular, it is always the case that ζα(x) ∈ argminζ∈R Fα(x, ζ) and
ψα(x) = Fα(x, ζα(x)) [24].

This result gives a linear optimization algorithm for computing α-CVaR. It is a result of the convexity of Fα(x, ζ),
that we are able to minimize CVaR for x ∈ X without having to numerically calculate φα(x) for every x. This has
been shown by Rockafellar and Uryasev in [25]. Further, it has been shown in [25] that for any probability threshold
α and loss tolerance ω, that constraining φα(x) ≤ ω is equivalent to constraining Fα(x, ζ) ≤ ω.

3.3.2 Robust Jamming with Percentile Constraints
Now that we have theoretical groundwork for the VaR and CVaR percentile measures, we develop formulations of
the robust jamming problems incorporating these risk constraints. We begin with the ROBUST NODE COVERING
PROBLEM. Since we are given a set of possible network scenarios, we would like to a develop formulation for the
RNCP in which the optimal solution will be guaranteed to cover some predetermined fraction α ∈ (0, 1) of the network
nodes, regardless of the scenario realized. To do this, we can include α-VaR constraints in the RNCP as follows. First
we define the surjection ρs : Ms 7→ {0, 1} by

ρs
i :=

{
1, if node i is jammed in scenario s,

0, otherwise.
(3.54)

Then we can formulate the ROBUST NODE COVERING PROBLEM with Value-at-Risk constraints as

(RNCP-VaR) min
n∑

k=1

ckxk, (3.55)

s.t.
n∑

k=1

ds
ikxk ≥ Cs

i ρs
i , ∀ s ∈ S, ∀ i ∈Ms, (3.56)

ms∑

i=1

ρs
i ≥ αms, ∀ s ∈ S, (3.57)

xk ∈ {0, 1}, ∀ k ∈ N , (3.58)
ρs

i ∈ {0, 1}, ∀ s ∈ S, ∀ i ∈Ms, (3.59)

Notice that to include the VaR constraints an additional ms binary variables are required for each scenario s ∈ S .
In a similar manner, we can incorporate VaR constraints into the RCIP by introducing ωs : Ms 7→ {0, 1} as

ωs
i :=

{
1, connectivity index of node i is constrained on scenario s,

0, no requirement on connectivity index of node i.
(3.60)
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Using this we can have

(RCIP-VaR) min
n∑

k=1

ckxk (3.61)

s.t.

M(1− zs
i ) >

n∑

k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ s ∈ S, ∀ i ∈Ms, (3.62)

ms∑

j=1
j 6=i

ys
ij ≤ Ls

i ω
s
i + M(1− ωs

i ), ∀ s ∈ S, ∀ i ∈Ms, (3.63)

ms∑

j=1

ωs
j ≥ αms, ∀ s ∈ S, (3.64)

xk ∈ {0, 1}, ∀ k ∈ N , (3.65)
zs
i , ω

s
i ∈ {0, 1}, ∀ s ∈ S, ∀ i ∈Ms, (3.66)

ys
ik ∈ {0, 1}, ∀ s ∈ S, ∀ i, k ∈Ms, (3.67)

where M ∈ R is some large constant. As with the RNCP-VaR formulation, an additional ms binary variables are
required for each scenario s ∈ S . We will see in the following section the dramatic effect that the inclusion of VaR
constraints has on the computability of optimal solutions.

In order to develop formulations incorporating CVaR constraints, we must derive an appropriate loss function for
each problem. We will begin with the RNCP. As in [7], we introduce the function fs : {0, 1}n ×Ms 7→ R defined by

fs(x, i) := Cs
i −

n∑

j=1

xjd
s
ij . (3.68)

Given a decision vector x representing the placement of the jamming devices, the loss function is defined as the
difference between the energy required to jam network node i, namely Cs

i , and the cumulative amount of energy
received at node i due to x over each scenario [7]. With this we can formulate the RNCP with CVaR constraints as
follows.

(RNCP-CVaR) min
n∑

k=1

ckxk, (3.69)

s.t.

ζs +
1

(1− α)ms

ms∑

i=1

max

{
Cs

min −
n∑

k=1

ds
ikxk − ζs, 0

}
≤ 0, ∀ s ∈ S, (3.70)

xk ∈ {0, 1}, ∀ k ∈ N , (3.71)
ζs ∈ R, ∀ s ∈ S. (3.72)

The CVaR constraint (3.70) implies that for the (1 − α) · 100% of the worst (least) covered nodes, the average value
of f(x) is less than or equal to 0.

In a similar manner, we can formulate the ROBUST CONNECTIVITY INDEX PROBLEM with the addition of CVaR
constraints. As before, we need to define an appropriate loss function. We define the loss function f ′s for a network
node i in scenario s as the difference between the connectivity index of i and the maximum allowable connectivity
index Ls

i which occurs as a result of the placement of the jamming devices according to x. That is, let f ′ : {0, 1}n ×
Ms 7→ Z be defined by

f ′s(x, i) :=
ms∑

j=1,j 6=i

ys
ij − Ls

i . (3.73)
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With this, the CIP-CVaR formulation is given as follows.

(RCIP-CVaR) min
n∑

k=1

ckxk, (3.74)

s.t.

ζs +
1

(1− α)ms

ms∑

i=1

max





ms∑

j=1
j 6=i

ys
ij − Ls

max − ζs, 0




≤ 0, ∀ s ∈ S, (3.75)

xk ∈ {0, 1}, ∀ k ∈ N , (3.76)
ys

ik ∈ {0, 1}, ∀ s ∈ S, ∀ i, k ∈Ms, (3.77)
ζs ∈ R, ∀ s ∈ S, (3.78)

where Ls
max is a maximum allowable connectivity index under scenario s which occurs as a result of the placement

of the jamming devices. The constraint on CVaR provides that for the (1− α) · 100% of the worst cases, the average
connectivity index will not exceed Lmax. Notice that to include the CVaR constraint, we only add real variables to the
problem. The continuous nature of CVaR variables versus the discrete nature of the VaR variables will explain the vast
difference in the computation times in the case studies presented in the following section.

3.4 Case Studies
In this section, we present some preliminary numerical results comparing the performance and solution quality of the
proposed formulations. The experiments were performed on a PC equipped with a 1.4MHz Intel Pentium R 4 processor
with 1GB of RAM, working under the Microsoft Windows R XP SP2 operating system. The optimal solutions for the
case studies were calculated using CPLEX 9.0.

The problem considered is relatively small, but provides some insights into the solutions obtained using VaR and
CVaR constraints. The network consists of 20 nodes which must be jammed. For this problem, we consider five
network scenarios. We note here that the jamming thresholds of the nodes do not depend upon the scenarios. As for
the placement of the jamming devices, we use the same approach as in [7], which consists of a 36 potential locations
located on the vertices of a uniform grid placed over the region containing the network. One network scenario showing
the potential locations of the jamming devices is shown in Figure 3.1. The remaining scenarios are depicted in Figure
3.2.

3.4.1 Node Covering Problems
We begin by examining the ROBUST NODE COVERING PROBLEM. For the first case study, we consider the RNCP with
Value-at-Risk constraints. For this case, the loss threshold for this case is .9 which implies that the covering constraints
must be satisfied for at least 90% of the network nodes. The optimal solution for this case requires 9 jamming devices.
CPLEX computed the solution for this problem in 18 seconds. The results of this instance are provided in Table 3.1.
The table shows the total jamming level as a percentage of the jamming threshold received by each node in each
scenario. Notice that all but 7 (over all scenarios) were totally jammed; however, for those nodes not totally jammed
VaR constraints provide no guarantee that they will receive any jamming energy whatsoever. Though not an important
factor in this case, this fact could potentially lead to problems in large-scale instances of the problem.

Next, we examine the same problem only replacing the VaR constraints with Conditional Value-at-Risk constraints.
As before, the loss threshold is .90, implying that the maximum allowable losses (uncovered nodes) exceeding VaR
must no greater than 10%. Interestingly, the optimal solution in this case also requires 9 jamming devices. However
this solution was computed in 0.922 seconds. The results from this study are shown in Table 3.2. Notice in this case
that with the same number of jamming devices all but 2 nodes (across all scenarios) were totally jammed. We see that
not only is this solution better in terms of the total number of jammed nodes, but it was also computed in an order of
magnitude less time.
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Table 3.1: Network coverage with VaR constraints. The total jamming level (%) for each scenario is shown.
Node Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 100 100 100 100 100
2 100 100 100 100 100
3 100 100 100 100 100
4 100 100 100 100 100
5 100 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100
8 100 100 100 100 100
9 100 100 100 100 100
10 100 100 100 100 100
11 100 100 100 100 100
12 100 100 100 100 100
13 100 100 100 100 79.31
14 100 100 100 100 100
15 100 75.74 100 100 100
16 86.45 81.86 100 57.84 100
17 100 100 100 100 100
18 100 100 100 100 100
19 100 100 100 100 100
20 86.47 100 100 65.24 100

3.4.2 Connectivity Index Problems
Now we discuss the results of the case study for the RSCIP with VaR and CVaR constraints. In this case, both maximum
connectivity index is L = 3. Again, the VaR threshold is .90. The optimal solution for this problem (without
percentile constraints) is shown in Figure 3.3. This solution requires 4 jamming devices and was computed in 3 : 58.
The solution using VaR constraints is shown in Figure 3.4. This solution also required 4 jamming devices, but took
8 : 49 : 43 to compute. The same solution was also obtained using CVaR constraints in a time comparable to the
original formulation. Even for this small example, we see that including VaR constraints in an optimization model
often leads to drastic increases in computation times. This provides more evidence that using CVaR constraints instead
is usually more efficient and provides solutions.

3.5 Conclusion
In this chapter, we develop models for jamming communication networks under uncertainty. This work extends
prior work by the authors in which deterministic cases of the problems were considered [4, 7]. In particular, we
have developed formulations for jamming wireless networks when the exact topology of the underlying network is
unknown. We have used scenario based techniques which provide robust solutions to the problems considered. Future
areas of research include investigating the required number of scenarios to accurately model the statistical properties of
the data. Due to the complexity of the problems considered, heuristics and advanced cutting plane techniques should
also be investigated.
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Table 3.2: Network coverage with CVaR constraints. The total jamming level (%) for each scenario is shown.
Node Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 100 100 100 100 100
2 100 100 100 100 100
3 100 100 100 100 100
4 100 100 100 100 100
5 100 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100
8 100 100 100 100 100
9 100 100 100 100 100
10 100 100 100 100 100
11 100 100 100 100 100
12 100 100 100 100 100
13 100 100 97.25 100 100
14 100 100 100 100 100
15 100 100 100 100 100
16 100 100 100 93.93 100
17 100 100 100 100 100
18 100 100 100 100 100
19 100 100 100 100 100
20 100 100 100 100 100

Figure 3.4: The optimal solution with VaR constraints for the networks in Figure 3.2 is given for the case when the
maximum connectivity index is 3 for all nodes.
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